Metamath Proof Explorer


Theorem infordmin

Description: _om is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion infordmin x On Fin ω x

Proof

Step Hyp Ref Expression
1 eldif x On Fin x On ¬ x Fin
2 omelon ω On
3 ontri1 ω On x On ω x ¬ x ω
4 3 bicomd ω On x On ¬ x ω ω x
5 4 con1bid ω On x On ¬ ω x x ω
6 nnfi x ω x Fin
7 5 6 syl6bi ω On x On ¬ ω x x Fin
8 2 7 mpan x On ¬ ω x x Fin
9 8 con1d x On ¬ x Fin ω x
10 9 imp x On ¬ x Fin ω x
11 1 10 sylbi x On Fin ω x
12 11 rgen x On Fin ω x