Metamath Proof Explorer


Theorem infordmin

Description: _om is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion infordmin xOnFinωx

Proof

Step Hyp Ref Expression
1 eldif xOnFinxOn¬xFin
2 omelon ωOn
3 ontri1 ωOnxOnωx¬xω
4 3 bicomd ωOnxOn¬xωωx
5 4 con1bid ωOnxOn¬ωxxω
6 nnfi xωxFin
7 5 6 syl6bi ωOnxOn¬ωxxFin
8 2 7 mpan xOn¬ωxxFin
9 8 con1d xOn¬xFinωx
10 9 imp xOn¬xFinωx
11 1 10 sylbi xOnFinωx
12 11 rgen xOnFinωx