Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
General Observations
infordmin
Next ⟩
iscard4
Metamath Proof Explorer
Ascii
Unicode
Theorem
infordmin
Description:
_om
is the smallest infinite ordinal.
(Contributed by
RP
, 27-Sep-2023)
Ref
Expression
Assertion
infordmin
⊢
∀
x
∈
On
∖
Fin
ω
⊆
x
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
x
∈
On
∖
Fin
↔
x
∈
On
∧
¬
x
∈
Fin
2
omelon
⊢
ω
∈
On
3
ontri1
⊢
ω
∈
On
∧
x
∈
On
→
ω
⊆
x
↔
¬
x
∈
ω
4
3
bicomd
⊢
ω
∈
On
∧
x
∈
On
→
¬
x
∈
ω
↔
ω
⊆
x
5
4
con1bid
⊢
ω
∈
On
∧
x
∈
On
→
¬
ω
⊆
x
↔
x
∈
ω
6
nnfi
⊢
x
∈
ω
→
x
∈
Fin
7
5
6
syl6bi
⊢
ω
∈
On
∧
x
∈
On
→
¬
ω
⊆
x
→
x
∈
Fin
8
2
7
mpan
⊢
x
∈
On
→
¬
ω
⊆
x
→
x
∈
Fin
9
8
con1d
⊢
x
∈
On
→
¬
x
∈
Fin
→
ω
⊆
x
10
9
imp
⊢
x
∈
On
∧
¬
x
∈
Fin
→
ω
⊆
x
11
1
10
sylbi
⊢
x
∈
On
∖
Fin
→
ω
⊆
x
12
11
rgen
⊢
∀
x
∈
On
∖
Fin
ω
⊆
x