Metamath Proof Explorer


Theorem infsdomnn

Description: An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004) (Revised by Mario Carneiro, 27-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 7-Jan-2025)

Ref Expression
Assertion infsdomnn ωABωBA

Proof

Step Hyp Ref Expression
1 nnfi BωBFin
2 1 adantl ωABωBFin
3 reldom Rel
4 3 brrelex1i ωAωV
5 nnsdomg ωVBωBω
6 4 5 sylan ωABωBω
7 simpl ωABωωA
8 sdomdomtrfi BFinBωωABA
9 2 6 7 8 syl3anc ωABωBA