Metamath Proof Explorer


Theorem infxrpnf2

Description: Removing plus infinity from a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion infxrpnf2 A*supA+∞*<=supA*<

Proof

Step Hyp Ref Expression
1 ssdifss A*A+∞*
2 infxrpnf A+∞*supA+∞+∞*<=supA+∞*<
3 1 2 syl A*supA+∞+∞*<=supA+∞*<
4 3 adantr A*+∞AsupA+∞+∞*<=supA+∞*<
5 difsnid +∞AA+∞+∞=A
6 5 infeq1d +∞AsupA+∞+∞*<=supA*<
7 6 adantl A*+∞AsupA+∞+∞*<=supA*<
8 4 7 eqtr3d A*+∞AsupA+∞*<=supA*<
9 difsn ¬+∞AA+∞=A
10 9 infeq1d ¬+∞AsupA+∞*<=supA*<
11 10 adantl A*¬+∞AsupA+∞*<=supA*<
12 8 11 pm2.61dan A*supA+∞*<=supA*<