Metamath Proof Explorer


Theorem infxrrefi

Description: The real and extended real infima match when the set is finite. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion infxrrefi AAFinAsupA*<=supA<

Proof

Step Hyp Ref Expression
1 simp1 AAFinAA
2 simp3 AAFinAA
3 fiminre2 AAFinxyAxy
4 3 3adant3 AAFinAxyAxy
5 infxrre AAxyAxysupA*<=supA<
6 1 2 4 5 syl3anc AAFinAsupA*<=supA<