Metamath Proof Explorer


Theorem inmap

Description: Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses inmap.a φ A V
inmap.b φ B W
inmap.c φ C Z
Assertion inmap φ A C B C = A B C

Proof

Step Hyp Ref Expression
1 inmap.a φ A V
2 inmap.b φ B W
3 inmap.c φ C Z
4 elinel1 f A C B C f A C
5 elmapi f A C f : C A
6 4 5 syl f A C B C f : C A
7 elinel2 f A C B C f B C
8 elmapi f B C f : C B
9 7 8 syl f A C B C f : C B
10 6 9 jca f A C B C f : C A f : C B
11 fin f : C A B f : C A f : C B
12 10 11 sylibr f A C B C f : C A B
13 12 adantl φ f A C B C f : C A B
14 inss1 A B A
15 14 a1i φ A B A
16 1 15 ssexd φ A B V
17 16 3 elmapd φ f A B C f : C A B
18 17 adantr φ f A C B C f A B C f : C A B
19 13 18 mpbird φ f A C B C f A B C
20 19 ralrimiva φ f A C B C f A B C
21 dfss3 A C B C A B C f A C B C f A B C
22 20 21 sylibr φ A C B C A B C
23 mapss A V A B A A B C A C
24 1 15 23 syl2anc φ A B C A C
25 inss2 A B B
26 25 a1i φ A B B
27 mapss B W A B B A B C B C
28 2 26 27 syl2anc φ A B C B C
29 24 28 ssind φ A B C A C B C
30 22 29 eqssd φ A C B C = A B C