Metamath Proof Explorer


Theorem inssdif0

Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof shortened by Wolf Lammen, 30-Sep-2014)

Ref Expression
Assertion inssdif0 ABCABC=

Proof

Step Hyp Ref Expression
1 elin xABxAxB
2 1 imbi1i xABxCxAxBxC
3 iman xAxBxC¬xAxB¬xC
4 2 3 bitri xABxC¬xAxB¬xC
5 eldif xBCxB¬xC
6 5 anbi2i xAxBCxAxB¬xC
7 elin xABCxAxBC
8 anass xAxB¬xCxAxB¬xC
9 6 7 8 3bitr4ri xAxB¬xCxABC
10 4 9 xchbinx xABxC¬xABC
11 10 albii xxABxCx¬xABC
12 dfss2 ABCxxABxC
13 eq0 ABC=x¬xABC
14 11 12 13 3bitr4i ABCABC=