Description: When for each element y there is a subset A which may substituted for x such that y satisfying ch implies x satisfies ps then the intersection of all x that satisfy ps is a subclass the intersection of all y that satisfy ch . (Contributed by RP, 17-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | intabssd.ex | |
|
intabssd.sub | |
||
intabssd.ss | |
||
Assertion | intabssd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intabssd.ex | |
|
2 | intabssd.sub | |
|
3 | intabssd.ss | |
|
4 | eleq2 | |
|
5 | 4 | biimpd | |
6 | 3 | sseld | |
7 | 5 6 | sylan9r | |
8 | 2 7 | imim12d | |
9 | 1 8 | spcimdv | |
10 | 9 | alrimdv | |
11 | vex | |
|
12 | 11 | elintab | |
13 | 11 | elintab | |
14 | 10 12 13 | 3imtr4g | |
15 | 14 | ssrdv | |