Metamath Proof Explorer


Theorem intabssd

Description: When for each element y there is a subset A which may substituted for x such that y satisfying ch implies x satisfies ps then the intersection of all x that satisfy ps is a subclass the intersection of all y that satisfy ch . (Contributed by RP, 17-Oct-2020)

Ref Expression
Hypotheses intabssd.ex φAV
intabssd.sub φx=Aχψ
intabssd.ss φAy
Assertion intabssd φx|ψy|χ

Proof

Step Hyp Ref Expression
1 intabssd.ex φAV
2 intabssd.sub φx=Aχψ
3 intabssd.ss φAy
4 eleq2 x=AzxzA
5 4 biimpd x=AzxzA
6 3 sseld φzAzy
7 5 6 sylan9r φx=Azxzy
8 2 7 imim12d φx=Aψzxχzy
9 1 8 spcimdv φxψzxχzy
10 9 alrimdv φxψzxyχzy
11 vex zV
12 11 elintab zx|ψxψzx
13 11 elintab zy|χyχzy
14 10 12 13 3imtr4g φzx|ψzy|χ
15 14 ssrdv φx|ψy|χ