Metamath Proof Explorer


Theorem intasym

Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in Schechter p. 51. (Contributed by NM, 9-Sep-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion intasym RR-1IxyxRyyRxx=y

Proof

Step Hyp Ref Expression
1 relcnv RelR-1
2 relin2 RelR-1RelRR-1
3 ssrel RelRR-1RR-1IxyxyRR-1xyI
4 1 2 3 mp2b RR-1IxyxyRR-1xyI
5 elin xyRR-1xyRxyR-1
6 df-br xRyxyR
7 vex xV
8 vex yV
9 7 8 brcnv xR-1yyRx
10 df-br xR-1yxyR-1
11 9 10 bitr3i yRxxyR-1
12 6 11 anbi12i xRyyRxxyRxyR-1
13 5 12 bitr4i xyRR-1xRyyRx
14 df-br xIyxyI
15 8 ideq xIyx=y
16 14 15 bitr3i xyIx=y
17 13 16 imbi12i xyRR-1xyIxRyyRxx=y
18 17 2albii xyxyRR-1xyIxyxRyyRxx=y
19 4 18 bitri RR-1IxyxRyyRxx=y