Metamath Proof Explorer


Theorem asymref

Description: Two ways of saying a relation is antisymmetric and reflexive. U. U. R is the field of a relation by relfld . (Contributed by NM, 6-May-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion asymref RR-1=IRxRyxRyyRxx=y

Proof

Step Hyp Ref Expression
1 df-br xRyxyR
2 vex xV
3 vex yV
4 2 3 opeluu xyRxRyR
5 1 4 sylbi xRyxRyR
6 5 simpld xRyxR
7 6 adantr xRyyRxxR
8 7 pm4.71ri xRyyRxxRxRyyRx
9 8 bibi1i xRyyRxxRx=yxRxRyyRxxRx=y
10 elin xyRR-1xyRxyR-1
11 2 3 brcnv xR-1yyRx
12 df-br xR-1yxyR-1
13 11 12 bitr3i yRxxyR-1
14 1 13 anbi12i xRyyRxxyRxyR-1
15 10 14 bitr4i xyRR-1xRyyRx
16 3 opelresi xyIRxRxyI
17 df-br xIyxyI
18 3 ideq xIyx=y
19 17 18 bitr3i xyIx=y
20 19 anbi2i xRxyIxRx=y
21 16 20 bitri xyIRxRx=y
22 15 21 bibi12i xyRR-1xyIRxRyyRxxRx=y
23 pm5.32 xRxRyyRxx=yxRxRyyRxxRx=y
24 9 22 23 3bitr4i xyRR-1xyIRxRxRyyRxx=y
25 24 albii yxyRR-1xyIRyxRxRyyRxx=y
26 19.21v yxRxRyyRxx=yxRyxRyyRxx=y
27 25 26 bitri yxyRR-1xyIRxRyxRyyRxx=y
28 27 albii xyxyRR-1xyIRxxRyxRyyRxx=y
29 relcnv RelR-1
30 relin2 RelR-1RelRR-1
31 29 30 ax-mp RelRR-1
32 relres RelIR
33 eqrel RelRR-1RelIRRR-1=IRxyxyRR-1xyIR
34 31 32 33 mp2an RR-1=IRxyxyRR-1xyIR
35 df-ral xRyxRyyRxx=yxxRyxRyyRxx=y
36 28 34 35 3bitr4i RR-1=IRxRyxRyyRxx=y