| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asymref |
|
| 2 |
|
albiim |
|
| 3 |
2
|
ralbii |
|
| 4 |
|
r19.26 |
|
| 5 |
|
ancom |
|
| 6 |
|
equcom |
|
| 7 |
6
|
imbi1i |
|
| 8 |
7
|
albii |
|
| 9 |
|
breq2 |
|
| 10 |
|
breq1 |
|
| 11 |
9 10
|
anbi12d |
|
| 12 |
|
anidm |
|
| 13 |
11 12
|
bitrdi |
|
| 14 |
13
|
equsalvw |
|
| 15 |
8 14
|
bitri |
|
| 16 |
15
|
ralbii |
|
| 17 |
|
df-ral |
|
| 18 |
|
df-br |
|
| 19 |
|
vex |
|
| 20 |
|
vex |
|
| 21 |
19 20
|
opeluu |
|
| 22 |
21
|
simpld |
|
| 23 |
18 22
|
sylbi |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
pm2.24d |
|
| 26 |
25
|
com12 |
|
| 27 |
26
|
alrimiv |
|
| 28 |
|
id |
|
| 29 |
27 28
|
ja |
|
| 30 |
|
ax-1 |
|
| 31 |
29 30
|
impbii |
|
| 32 |
31
|
albii |
|
| 33 |
17 32
|
bitri |
|
| 34 |
16 33
|
anbi12i |
|
| 35 |
4 5 34
|
3bitri |
|
| 36 |
1 3 35
|
3bitri |
|