Metamath Proof Explorer


Theorem intopval

Description: The internal (binary) operations for a set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion intopval M V N W M intOp N = N M × M

Proof

Step Hyp Ref Expression
1 df-intop intOp = m V , n V n m × m
2 1 a1i M V N W intOp = m V , n V n m × m
3 simpr m = M n = N n = N
4 simpl m = M n = N m = M
5 4 sqxpeqd m = M n = N m × m = M × M
6 3 5 oveq12d m = M n = N n m × m = N M × M
7 6 adantl M V N W m = M n = N n m × m = N M × M
8 elex M V M V
9 8 adantr M V N W M V
10 elex N W N V
11 10 adantl M V N W N V
12 ovexd M V N W N M × M V
13 2 7 9 11 12 ovmpod M V N W M intOp N = N M × M