Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for ML
Miscellaneous
inunissunidif
Next ⟩
rdgellim
Metamath Proof Explorer
Ascii
Unicode
Theorem
inunissunidif
Description:
Theorem about subsets of the difference of unions.
(Contributed by
ML
, 29-Mar-2021)
Ref
Expression
Assertion
inunissunidif
⊢
A
∩
⋃
C
=
∅
→
A
⊆
⋃
B
↔
A
⊆
⋃
B
∖
C
Proof
Step
Hyp
Ref
Expression
1
reldisj
⊢
A
⊆
⋃
B
→
A
∩
⋃
C
=
∅
↔
A
⊆
⋃
B
∖
⋃
C
2
difunieq
⊢
⋃
B
∖
⋃
C
⊆
⋃
B
∖
C
3
sstr
⊢
A
⊆
⋃
B
∖
⋃
C
∧
⋃
B
∖
⋃
C
⊆
⋃
B
∖
C
→
A
⊆
⋃
B
∖
C
4
2
3
mpan2
⊢
A
⊆
⋃
B
∖
⋃
C
→
A
⊆
⋃
B
∖
C
5
1
4
syl6bi
⊢
A
⊆
⋃
B
→
A
∩
⋃
C
=
∅
→
A
⊆
⋃
B
∖
C
6
5
com12
⊢
A
∩
⋃
C
=
∅
→
A
⊆
⋃
B
→
A
⊆
⋃
B
∖
C
7
difss
⊢
B
∖
C
⊆
B
8
7
unissi
⊢
⋃
B
∖
C
⊆
⋃
B
9
sstr
⊢
A
⊆
⋃
B
∖
C
∧
⋃
B
∖
C
⊆
⋃
B
→
A
⊆
⋃
B
10
8
9
mpan2
⊢
A
⊆
⋃
B
∖
C
→
A
⊆
⋃
B
11
6
10
impbid1
⊢
A
∩
⋃
C
=
∅
→
A
⊆
⋃
B
↔
A
⊆
⋃
B
∖
C