Metamath Proof Explorer


Theorem invco

Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
isoval.n I=IsoC
invinv.f φFXIY
invco.o ·˙=compC
invco.z φZB
invco.f φGYIZ
Assertion invco φGXY·˙ZFXNZXNYFZY·˙XYNZG

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 isoval.n I=IsoC
7 invinv.f φFXIY
8 invco.o ·˙=compC
9 invco.z φZB
10 invco.f φGYIZ
11 eqid SectC=SectC
12 1 2 3 4 5 6 isoval φXIY=domXNY
13 7 12 eleqtrd φFdomXNY
14 1 2 3 4 5 invfun φFunXNY
15 funfvbrb FunXNYFdomXNYFXNYXNYF
16 14 15 syl φFdomXNYFXNYXNYF
17 13 16 mpbid φFXNYXNYF
18 1 2 3 4 5 11 isinv φFXNYXNYFFXSectCYXNYFXNYFYSectCXF
19 17 18 mpbid φFXSectCYXNYFXNYFYSectCXF
20 19 simpld φFXSectCYXNYF
21 1 2 3 5 9 6 isoval φYIZ=domYNZ
22 10 21 eleqtrd φGdomYNZ
23 1 2 3 5 9 invfun φFunYNZ
24 funfvbrb FunYNZGdomYNZGYNZYNZG
25 23 24 syl φGdomYNZGYNZYNZG
26 22 25 mpbid φGYNZYNZG
27 1 2 3 5 9 11 isinv φGYNZYNZGGYSectCZYNZGYNZGZSectCYG
28 26 27 mpbid φGYSectCZYNZGYNZGZSectCYG
29 28 simpld φGYSectCZYNZG
30 1 8 11 3 4 5 9 20 29 sectco φGXY·˙ZFXSectCZXNYFZY·˙XYNZG
31 28 simprd φYNZGZSectCYG
32 19 simprd φXNYFYSectCXF
33 1 8 11 3 9 5 4 31 32 sectco φXNYFZY·˙XYNZGZSectCXGXY·˙ZF
34 1 2 3 4 9 11 isinv φGXY·˙ZFXNZXNYFZY·˙XYNZGGXY·˙ZFXSectCZXNYFZY·˙XYNZGXNYFZY·˙XYNZGZSectCXGXY·˙ZF
35 30 33 34 mpbir2and φGXY·˙ZFXNZXNYFZY·˙XYNZG