Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invfval.b | |
|
invfval.n | |
||
invfval.c | |
||
invfval.x | |
||
invfval.y | |
||
isoval.n | |
||
invinv.f | |
||
invco.o | |
||
invco.z | |
||
invco.f | |
||
Assertion | invco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | |
|
2 | invfval.n | |
|
3 | invfval.c | |
|
4 | invfval.x | |
|
5 | invfval.y | |
|
6 | isoval.n | |
|
7 | invinv.f | |
|
8 | invco.o | |
|
9 | invco.z | |
|
10 | invco.f | |
|
11 | eqid | |
|
12 | 1 2 3 4 5 6 | isoval | |
13 | 7 12 | eleqtrd | |
14 | 1 2 3 4 5 | invfun | |
15 | funfvbrb | |
|
16 | 14 15 | syl | |
17 | 13 16 | mpbid | |
18 | 1 2 3 4 5 11 | isinv | |
19 | 17 18 | mpbid | |
20 | 19 | simpld | |
21 | 1 2 3 5 9 6 | isoval | |
22 | 10 21 | eleqtrd | |
23 | 1 2 3 5 9 | invfun | |
24 | funfvbrb | |
|
25 | 23 24 | syl | |
26 | 22 25 | mpbid | |
27 | 1 2 3 5 9 11 | isinv | |
28 | 26 27 | mpbid | |
29 | 28 | simpld | |
30 | 1 8 11 3 4 5 9 20 29 | sectco | |
31 | 28 | simprd | |
32 | 19 | simprd | |
33 | 1 8 11 3 9 5 4 31 32 | sectco | |
34 | 1 2 3 4 9 11 | isinv | |
35 | 30 33 34 | mpbir2and | |