Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invfval.b | |
|
invfval.n | |
||
invfval.c | |
||
invfval.x | |
||
invfval.y | |
||
isoval.n | |
||
invinv.f | |
||
Assertion | invinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | |
|
2 | invfval.n | |
|
3 | invfval.c | |
|
4 | invfval.x | |
|
5 | invfval.y | |
|
6 | isoval.n | |
|
7 | invinv.f | |
|
8 | 1 2 3 4 5 | invsym2 | |
9 | 8 | fveq1d | |
10 | 1 2 3 4 5 6 | invf1o | |
11 | f1ocnvfv1 | |
|
12 | 10 7 11 | syl2anc | |
13 | 9 12 | eqtr3d | |