Metamath Proof Explorer


Theorem invinv

Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of Adamek p. 29. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
isoval.n I=IsoC
invinv.f φFXIY
Assertion invinv φYNXXNYF=F

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 isoval.n I=IsoC
7 invinv.f φFXIY
8 1 2 3 4 5 invsym2 φXNY-1=YNX
9 8 fveq1d φXNY-1XNYF=YNXXNYF
10 1 2 3 4 5 6 invf1o φXNY:XIY1-1 ontoYIX
11 f1ocnvfv1 XNY:XIY1-1 ontoYIXFXIYXNY-1XNYF=F
12 10 7 11 syl2anc φXNY-1XNYF=F
13 9 12 eqtr3d φYNXXNYF=F