Metamath Proof Explorer


Theorem ioomidp

Description: The midpoint is an element of the open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioomidp ABA<BA+B2AB

Proof

Step Hyp Ref Expression
1 rexr AA*
2 1 3ad2ant1 ABA<BA*
3 rexr BB*
4 3 3ad2ant2 ABA<BB*
5 readdcl ABA+B
6 5 rehalfcld ABA+B2
7 6 3adant3 ABA<BA+B2
8 avglt1 ABA<BA<A+B2
9 8 biimp3a ABA<BA<A+B2
10 avglt2 ABA<BA+B2<B
11 10 biimp3a ABA<BA+B2<B
12 2 4 7 9 11 eliood ABA<BA+B2AB