Metamath Proof Explorer


Theorem iooordt

Description: An open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iooordt ABordTop

Proof

Step Hyp Ref Expression
1 eqid ranx*x+∞=ranx*x+∞
2 eqid ranx*−∞x=ranx*−∞x
3 eqid ran.=ran.
4 1 2 3 leordtval ordTop=topGenranx*x+∞ranx*−∞xran.
5 letop ordTopTop
6 4 5 eqeltrri topGenranx*x+∞ranx*−∞xran.Top
7 tgclb ranx*x+∞ranx*−∞xran.TopBasestopGenranx*x+∞ranx*−∞xran.Top
8 6 7 mpbir ranx*x+∞ranx*−∞xran.TopBases
9 bastg ranx*x+∞ranx*−∞xran.TopBasesranx*x+∞ranx*−∞xran.topGenranx*x+∞ranx*−∞xran.
10 8 9 ax-mp ranx*x+∞ranx*−∞xran.topGenranx*x+∞ranx*−∞xran.
11 10 4 sseqtrri ranx*x+∞ranx*−∞xran.ordTop
12 ssun2 ran.ranx*x+∞ranx*−∞xran.
13 ioorebas ABran.
14 12 13 sselii ABranx*x+∞ranx*−∞xran.
15 11 14 sselii ABordTop