Metamath Proof Explorer


Theorem iordsmo

Description: The identity relation restricted to the ordinals is a strictly monotone function. (Contributed by Andrew Salmon, 16-Nov-2011)

Ref Expression
Hypothesis iordsmo.1 OrdA
Assertion iordsmo SmoIA

Proof

Step Hyp Ref Expression
1 iordsmo.1 OrdA
2 fnresi IAFnA
3 rnresi ranIA=A
4 ordsson OrdAAOn
5 1 4 ax-mp AOn
6 3 5 eqsstri ranIAOn
7 df-f IA:AOnIAFnAranIAOn
8 2 6 7 mpbir2an IA:AOn
9 fvresi xAIAx=x
10 9 adantr xAyAIAx=x
11 fvresi yAIAy=y
12 11 adantl xAyAIAy=y
13 10 12 eleq12d xAyAIAxIAyxy
14 13 biimprd xAyAxyIAxIAy
15 dmresi domIA=A
16 8 1 14 15 issmo SmoIA