Metamath Proof Explorer


Theorem ipass

Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipdir.f K=BaseF
ipass.s ·˙=W
ipass.p ×˙=F
Assertion ipass WPreHilAKBVCVA·˙B,˙C=A×˙B,˙C

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipdir.f K=BaseF
5 ipass.s ·˙=W
6 ipass.p ×˙=F
7 eqid xVx,˙C=xVx,˙C
8 1 2 3 7 phllmhm WPreHilCVxVx,˙CWLMHomringLModF
9 8 3ad2antr3 WPreHilAKBVCVxVx,˙CWLMHomringLModF
10 simpr1 WPreHilAKBVCVAK
11 simpr2 WPreHilAKBVCVBV
12 rlmvsca F=ringLModF
13 6 12 eqtri ×˙=ringLModF
14 1 4 3 5 13 lmhmlin xVx,˙CWLMHomringLModFAKBVxVx,˙CA·˙B=A×˙xVx,˙CB
15 9 10 11 14 syl3anc WPreHilAKBVCVxVx,˙CA·˙B=A×˙xVx,˙CB
16 phllmod WPreHilWLMod
17 16 adantr WPreHilAKBVCVWLMod
18 3 1 5 4 lmodvscl WLModAKBVA·˙BV
19 17 10 11 18 syl3anc WPreHilAKBVCVA·˙BV
20 oveq1 x=A·˙Bx,˙C=A·˙B,˙C
21 ovex x,˙CV
22 20 7 21 fvmpt3i A·˙BVxVx,˙CA·˙B=A·˙B,˙C
23 19 22 syl WPreHilAKBVCVxVx,˙CA·˙B=A·˙B,˙C
24 oveq1 x=Bx,˙C=B,˙C
25 24 7 21 fvmpt3i BVxVx,˙CB=B,˙C
26 11 25 syl WPreHilAKBVCVxVx,˙CB=B,˙C
27 26 oveq2d WPreHilAKBVCVA×˙xVx,˙CB=A×˙B,˙C
28 15 23 27 3eqtr3d WPreHilAKBVCVA·˙B,˙C=A×˙B,˙C