Metamath Proof Explorer


Theorem ipffval

Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses ipffval.1 V=BaseW
ipffval.2 ,˙=𝑖W
ipffval.3 ·˙=ifW
Assertion ipffval ·˙=xV,yVx,˙y

Proof

Step Hyp Ref Expression
1 ipffval.1 V=BaseW
2 ipffval.2 ,˙=𝑖W
3 ipffval.3 ·˙=ifW
4 fveq2 g=WBaseg=BaseW
5 4 1 eqtr4di g=WBaseg=V
6 fveq2 g=W𝑖g=𝑖W
7 6 2 eqtr4di g=W𝑖g=,˙
8 7 oveqd g=Wx𝑖gy=x,˙y
9 5 5 8 mpoeq123dv g=WxBaseg,yBasegx𝑖gy=xV,yVx,˙y
10 df-ipf if=gVxBaseg,yBasegx𝑖gy
11 1 fvexi VV
12 2 fvexi ,˙V
13 12 rnex ran,˙V
14 p0ex V
15 13 14 unex ran,˙V
16 df-ov x,˙y=,˙xy
17 fvrn0 ,˙xyran,˙
18 16 17 eqeltri x,˙yran,˙
19 18 rgen2w xVyVx,˙yran,˙
20 11 11 15 19 mpoexw xV,yVx,˙yV
21 9 10 20 fvmpt WVifW=xV,yVx,˙y
22 fvprc ¬WVifW=
23 fvprc ¬WVBaseW=
24 1 23 eqtrid ¬WVV=
25 24 olcd ¬WVV=V=
26 0mpo0 V=V=xV,yVx,˙y=
27 25 26 syl ¬WVxV,yVx,˙y=
28 22 27 eqtr4d ¬WVifW=xV,yVx,˙y
29 21 28 pm2.61i ifW=xV,yVx,˙y
30 3 29 eqtri ·˙=xV,yVx,˙y