Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015) (Proof shortened by AV, 2-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ipffval.1 | |
|
ipffval.2 | |
||
ipffval.3 | |
||
Assertion | ipffval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipffval.1 | |
|
2 | ipffval.2 | |
|
3 | ipffval.3 | |
|
4 | fveq2 | |
|
5 | 4 1 | eqtr4di | |
6 | fveq2 | |
|
7 | 6 2 | eqtr4di | |
8 | 7 | oveqd | |
9 | 5 5 8 | mpoeq123dv | |
10 | df-ipf | |
|
11 | 1 | fvexi | |
12 | 2 | fvexi | |
13 | 12 | rnex | |
14 | p0ex | |
|
15 | 13 14 | unex | |
16 | df-ov | |
|
17 | fvrn0 | |
|
18 | 16 17 | eqeltri | |
19 | 18 | rgen2w | |
20 | 11 11 15 19 | mpoexw | |
21 | 9 10 20 | fvmpt | |
22 | fvprc | |
|
23 | fvprc | |
|
24 | 1 23 | eqtrid | |
25 | 24 | olcd | |
26 | 0mpo0 | |
|
27 | 25 26 | syl | |
28 | 22 27 | eqtr4d | |
29 | 21 28 | pm2.61i | |
30 | 3 29 | eqtri | |