Metamath Proof Explorer


Theorem ipiiie0

Description: The multiplicative inverse of _i (per i4 ) is also its additive inverse. (Contributed by SN, 30-Jun-2024)

Ref Expression
Assertion ipiiie0 i + i i i = 0

Proof

Step Hyp Ref Expression
1 it1ei i 1 = i
2 1 eqcomi i = i 1
3 reixi i i = 0 - 1
4 3 oveq2i i i i = i 0 - 1
5 2 4 oveq12i i + i i i = i 1 + i 0 - 1
6 ax-icn i
7 ax-1cn 1
8 1re 1
9 rernegcl 1 0 - 1
10 8 9 ax-mp 0 - 1
11 10 recni 0 - 1
12 6 7 11 adddii i 1 + 0 - 1 = i 1 + i 0 - 1
13 renegid 1 1 + 0 - 1 = 0
14 8 13 ax-mp 1 + 0 - 1 = 0
15 14 oveq2i i 1 + 0 - 1 = i 0
16 sn-it0e0 i 0 = 0
17 15 16 eqtri i 1 + 0 - 1 = 0
18 5 12 17 3eqtr2i i + i i i = 0