Metamath Proof Explorer


Theorem ipolerval

Description: Relation of the inclusion poset. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Hypothesis ipoval.i I=toIncF
Assertion ipolerval FVxy|xyFxy=I

Proof

Step Hyp Ref Expression
1 ipoval.i I=toIncF
2 simpl xyFxyxyF
3 vex xV
4 vex yV
5 3 4 prss xFyFxyF
6 2 5 sylibr xyFxyxFyF
7 6 ssopab2i xy|xyFxyxy|xFyF
8 df-xp F×F=xy|xFyF
9 7 8 sseqtrri xy|xyFxyF×F
10 sqxpexg FVF×FV
11 ssexg xy|xyFxyF×FF×FVxy|xyFxyV
12 9 10 11 sylancr FVxy|xyFxyV
13 ipostr BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=Struct111
14 pleid le=Slotndx
15 snsspr1 ndxxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
16 ssun2 ndxxy|xyFxyocndxxFyF|yx=BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
17 15 16 sstri ndxxy|xyFxyBasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
18 13 14 17 strfv xy|xyFxyVxy|xyFxy=BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
19 12 18 syl FVxy|xyFxy=BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
20 eqid xy|xyFxy=xy|xyFxy
21 1 20 ipoval FVI=BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
22 21 fveq2d FVI=BasendxFTopSetndxordTopxy|xyFxyndxxy|xyFxyocndxxFyF|yx=
23 19 22 eqtr4d FVxy|xyFxy=I