Metamath Proof Explorer


Theorem isarchi

Description: Express the predicate " W is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses isarchi.b B=BaseW
isarchi.0 0˙=0W
isarchi.i <˙=W
Assertion isarchi WVWArchixByB¬x<˙y

Proof

Step Hyp Ref Expression
1 isarchi.b B=BaseW
2 isarchi.0 0˙=0W
3 isarchi.i <˙=W
4 fveqeq2 w=Ww=W=
5 df-archi Archi=w|w=
6 4 5 elab2g WVWArchiW=
7 1 inftmrel WVWB×B
8 ss0b WW=
9 ssrel2 WB×BWxByBxyWxy
10 8 9 bitr3id WB×BW=xByBxyWxy
11 noel ¬xy
12 11 nbn ¬xyWxyWxy
13 3 breqi x<˙yxWy
14 df-br xWyxyW
15 13 14 bitri x<˙yxyW
16 12 15 xchnxbir ¬x<˙yxyWxy
17 11 pm2.21i xyxyW
18 dfbi2 xyWxyxyWxyxyxyW
19 17 18 mpbiran2 xyWxyxyWxy
20 16 19 bitri ¬x<˙yxyWxy
21 20 2ralbii xByB¬x<˙yxByBxyWxy
22 10 21 bitr4di WB×BW=xByB¬x<˙y
23 7 22 syl WVW=xByB¬x<˙y
24 6 23 bitrd WVWArchixByB¬x<˙y