Metamath Proof Explorer


Theorem isbn

Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis isbn.1 F=ScalarW
Assertion isbn WBanWNrmVecWCMetSpFCMetSp

Proof

Step Hyp Ref Expression
1 isbn.1 F=ScalarW
2 elin WNrmVecCMetSpWNrmVecWCMetSp
3 2 anbi1i WNrmVecCMetSpFCMetSpWNrmVecWCMetSpFCMetSp
4 fveq2 w=WScalarw=ScalarW
5 4 1 eqtr4di w=WScalarw=F
6 5 eleq1d w=WScalarwCMetSpFCMetSp
7 df-bn Ban=wNrmVecCMetSp|ScalarwCMetSp
8 6 7 elrab2 WBanWNrmVecCMetSpFCMetSp
9 df-3an WNrmVecWCMetSpFCMetSpWNrmVecWCMetSpFCMetSp
10 3 8 9 3bitr4i WBanWNrmVecWCMetSpFCMetSp