Metamath Proof Explorer


Theorem iscbn

Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006) Use isbn instead. (New usage is discouraged.)

Ref Expression
Hypotheses iscbn.x X=BaseSetU
iscbn.8 D=IndMetU
Assertion iscbn UCBanUNrmCVecDCMetX

Proof

Step Hyp Ref Expression
1 iscbn.x X=BaseSetU
2 iscbn.8 D=IndMetU
3 fveq2 u=UIndMetu=IndMetU
4 3 2 eqtr4di u=UIndMetu=D
5 fveq2 u=UBaseSetu=BaseSetU
6 5 1 eqtr4di u=UBaseSetu=X
7 6 fveq2d u=UCMetBaseSetu=CMetX
8 4 7 eleq12d u=UIndMetuCMetBaseSetuDCMetX
9 df-cbn CBan=uNrmCVec|IndMetuCMetBaseSetu
10 8 9 elrab2 UCBanUNrmCVecDCMetX