Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringcl.b | |
|
ringcl.t | |
||
Assertion | iscrng2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcl.b | |
|
2 | ringcl.t | |
|
3 | eqid | |
|
4 | 3 | iscrng | |
5 | 3 | ringmgp | |
6 | 3 1 | mgpbas | |
7 | 3 2 | mgpplusg | |
8 | 6 7 | iscmn | |
9 | 8 | baib | |
10 | 5 9 | syl | |
11 | 10 | pm5.32i | |
12 | 4 11 | bitri | |