Metamath Proof Explorer


Theorem iscrng2

Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses ringcl.b B=BaseR
ringcl.t ·˙=R
Assertion iscrng2 RCRingRRingxByBx·˙y=y·˙x

Proof

Step Hyp Ref Expression
1 ringcl.b B=BaseR
2 ringcl.t ·˙=R
3 eqid mulGrpR=mulGrpR
4 3 iscrng RCRingRRingmulGrpRCMnd
5 3 ringmgp RRingmulGrpRMnd
6 3 1 mgpbas B=BasemulGrpR
7 3 2 mgpplusg ·˙=+mulGrpR
8 6 7 iscmn mulGrpRCMndmulGrpRMndxByBx·˙y=y·˙x
9 8 baib mulGrpRMndmulGrpRCMndxByBx·˙y=y·˙x
10 5 9 syl RRingmulGrpRCMndxByBx·˙y=y·˙x
11 10 pm5.32i RRingmulGrpRCMndRRingxByBx·˙y=y·˙x
12 4 11 bitri RCRingRRingxByBx·˙y=y·˙x