Metamath Proof Explorer


Theorem iscrngo2

Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Hypotheses iscring2.1 G=1stR
iscring2.2 H=2ndR
iscring2.3 X=ranG
Assertion iscrngo2 RCRingOpsRRingOpsxXyXxHy=yHx

Proof

Step Hyp Ref Expression
1 iscring2.1 G=1stR
2 iscring2.2 H=2ndR
3 iscring2.3 X=ranG
4 iscrngo RCRingOpsRRingOpsRCom2
5 relrngo RelRingOps
6 1st2nd RelRingOpsRRingOpsR=1stR2ndR
7 5 6 mpan RRingOpsR=1stR2ndR
8 eleq1 R=1stR2ndRRCom21stR2ndRCom2
9 1 rneqi ranG=ran1stR
10 3 9 eqtri X=ran1stR
11 10 raleqi xXyran1stRx2ndRy=y2ndRxxran1stRyran1stRx2ndRy=y2ndRx
12 2 oveqi xHy=x2ndRy
13 2 oveqi yHx=y2ndRx
14 12 13 eqeq12i xHy=yHxx2ndRy=y2ndRx
15 10 14 raleqbii yXxHy=yHxyran1stRx2ndRy=y2ndRx
16 15 ralbii xXyXxHy=yHxxXyran1stRx2ndRy=y2ndRx
17 fvex 1stRV
18 fvex 2ndRV
19 iscom2 1stRV2ndRV1stR2ndRCom2xran1stRyran1stRx2ndRy=y2ndRx
20 17 18 19 mp2an 1stR2ndRCom2xran1stRyran1stRx2ndRy=y2ndRx
21 11 16 20 3bitr4ri 1stR2ndRCom2xXyXxHy=yHx
22 8 21 bitrdi R=1stR2ndRRCom2xXyXxHy=yHx
23 7 22 syl RRingOpsRCom2xXyXxHy=yHx
24 23 pm5.32i RRingOpsRCom2RRingOpsxXyXxHy=yHx
25 4 24 bitri RCRingOpsRRingOpsxXyXxHy=yHx