Metamath Proof Explorer


Theorem isepi2

Description: Write out the epimorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses isepi.b B=BaseC
isepi.h H=HomC
isepi.o ·˙=compC
isepi.e E=EpiC
isepi.c φCCat
isepi.x φXB
isepi.y φYB
Assertion isepi2 φFXEYFXHYzBgYHzhYHzgXY·˙zF=hXY·˙zFg=h

Proof

Step Hyp Ref Expression
1 isepi.b B=BaseC
2 isepi.h H=HomC
3 isepi.o ·˙=compC
4 isepi.e E=EpiC
5 isepi.c φCCat
6 isepi.x φXB
7 isepi.y φYB
8 1 2 3 4 5 6 7 isepi φFXEYFXHYzBFungYHzgXY·˙zF-1
9 5 ad2antrr φFXHYzBgYHzCCat
10 6 ad2antrr φFXHYzBgYHzXB
11 7 ad2antrr φFXHYzBgYHzYB
12 simprl φFXHYzBgYHzzB
13 simplr φFXHYzBgYHzFXHY
14 simprr φFXHYzBgYHzgYHz
15 1 2 3 9 10 11 12 13 14 catcocl φFXHYzBgYHzgXY·˙zFXHz
16 15 anassrs φFXHYzBgYHzgXY·˙zFXHz
17 16 ralrimiva φFXHYzBgYHzgXY·˙zFXHz
18 eqid gYHzgXY·˙zF=gYHzgXY·˙zF
19 18 fmpt gYHzgXY·˙zFXHzgYHzgXY·˙zF:YHzXHz
20 df-f1 gYHzgXY·˙zF:YHz1-1XHzgYHzgXY·˙zF:YHzXHzFungYHzgXY·˙zF-1
21 20 baib gYHzgXY·˙zF:YHzXHzgYHzgXY·˙zF:YHz1-1XHzFungYHzgXY·˙zF-1
22 19 21 sylbi gYHzgXY·˙zFXHzgYHzgXY·˙zF:YHz1-1XHzFungYHzgXY·˙zF-1
23 oveq1 g=hgXY·˙zF=hXY·˙zF
24 18 23 f1mpt gYHzgXY·˙zF:YHz1-1XHzgYHzgXY·˙zFXHzgYHzhYHzgXY·˙zF=hXY·˙zFg=h
25 24 baib gYHzgXY·˙zFXHzgYHzgXY·˙zF:YHz1-1XHzgYHzhYHzgXY·˙zF=hXY·˙zFg=h
26 22 25 bitr3d gYHzgXY·˙zFXHzFungYHzgXY·˙zF-1gYHzhYHzgXY·˙zF=hXY·˙zFg=h
27 17 26 syl φFXHYzBFungYHzgXY·˙zF-1gYHzhYHzgXY·˙zF=hXY·˙zFg=h
28 27 ralbidva φFXHYzBFungYHzgXY·˙zF-1zBgYHzhYHzgXY·˙zF=hXY·˙zFg=h
29 28 pm5.32da φFXHYzBFungYHzgXY·˙zF-1FXHYzBgYHzhYHzgXY·˙zF=hXY·˙zFg=h
30 8 29 bitrd φFXEYFXHYzBgYHzhYHzgXY·˙zF=hXY·˙zFg=h