Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007) (Revised by Mario Carneiro, 1-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clim2ser.1 | |
|
isermulc2.2 | |
||
isermulc2.4 | |
||
isermulc2.5 | |
||
isermulc2.6 | |
||
isermulc2.7 | |
||
Assertion | isermulc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2ser.1 | |
|
2 | isermulc2.2 | |
|
3 | isermulc2.4 | |
|
4 | isermulc2.5 | |
|
5 | isermulc2.6 | |
|
6 | isermulc2.7 | |
|
7 | seqex | |
|
8 | 7 | a1i | |
9 | 1 2 5 | serf | |
10 | 9 | ffvelcdmda | |
11 | addcl | |
|
12 | 11 | adantl | |
13 | 3 | adantr | |
14 | adddi | |
|
15 | 14 | 3expb | |
16 | 13 15 | sylan | |
17 | simpr | |
|
18 | 17 1 | eleqtrdi | |
19 | elfzuz | |
|
20 | 19 1 | eleqtrrdi | |
21 | 20 5 | sylan2 | |
22 | 21 | adantlr | |
23 | 20 6 | sylan2 | |
24 | 23 | adantlr | |
25 | 12 16 18 22 24 | seqdistr | |
26 | 1 2 4 3 8 10 25 | climmulc2 | |