Metamath Proof Explorer


Theorem isermulc2

Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
isermulc2.2 φM
isermulc2.4 φC
isermulc2.5 φseqM+FA
isermulc2.6 φkZFk
isermulc2.7 φkZGk=CFk
Assertion isermulc2 φseqM+GCA

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 isermulc2.2 φM
3 isermulc2.4 φC
4 isermulc2.5 φseqM+FA
5 isermulc2.6 φkZFk
6 isermulc2.7 φkZGk=CFk
7 seqex seqM+GV
8 7 a1i φseqM+GV
9 1 2 5 serf φseqM+F:Z
10 9 ffvelcdmda φjZseqM+Fj
11 addcl kxk+x
12 11 adantl φjZkxk+x
13 3 adantr φjZC
14 adddi CkxCk+x=Ck+Cx
15 14 3expb CkxCk+x=Ck+Cx
16 13 15 sylan φjZkxCk+x=Ck+Cx
17 simpr φjZjZ
18 17 1 eleqtrdi φjZjM
19 elfzuz kMjkM
20 19 1 eleqtrrdi kMjkZ
21 20 5 sylan2 φkMjFk
22 21 adantlr φjZkMjFk
23 20 6 sylan2 φkMjGk=CFk
24 23 adantlr φjZkMjGk=CFk
25 12 16 18 22 24 seqdistr φjZseqM+Gj=CseqM+Fj
26 1 2 4 3 8 10 25 climmulc2 φseqM+GCA