Metamath Proof Explorer


Theorem isexid

Description: The predicate G has a left and right identity element. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis isexid.1 X=domdomG
Assertion isexid GAGExIdxXyXxGy=yyGx=y

Proof

Step Hyp Ref Expression
1 isexid.1 X=domdomG
2 dmeq g=Gdomg=domG
3 2 dmeqd g=Gdomdomg=domdomG
4 3 1 eqtr4di g=Gdomdomg=X
5 oveq g=Gxgy=xGy
6 5 eqeq1d g=Gxgy=yxGy=y
7 oveq g=Gygx=yGx
8 7 eqeq1d g=Gygx=yyGx=y
9 6 8 anbi12d g=Gxgy=yygx=yxGy=yyGx=y
10 4 9 raleqbidv g=Gydomdomgxgy=yygx=yyXxGy=yyGx=y
11 4 10 rexeqbidv g=Gxdomdomgydomdomgxgy=yygx=yxXyXxGy=yyGx=y
12 df-exid ExId=g|xdomdomgydomdomgxgy=yygx=y
13 11 12 elab2g GAGExIdxXyXxGy=yyGx=y