Metamath Proof Explorer


Theorem isf32lem4

Description: Lemma for isfin3-2 . Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φF:ω𝒫G
isf32lem.b φxωFsucxFx
isf32lem.c φ¬ranFranF
Assertion isf32lem4 φABAωBωFAFsucAFBFsucB=

Proof

Step Hyp Ref Expression
1 isf32lem.a φF:ω𝒫G
2 isf32lem.b φxωFsucxFx
3 isf32lem.c φ¬ranFranF
4 simplrr φABAωBωABBω
5 simplrl φABAωBωABAω
6 simpr φABAωBωABAB
7 simplll φABAωBωABφ
8 incom FAFsucAFBFsucB=FBFsucBFAFsucA
9 1 2 3 isf32lem3 BωAωABφFBFsucBFAFsucA=
10 8 9 eqtrid BωAωABφFAFsucAFBFsucB=
11 4 5 6 7 10 syl22anc φABAωBωABFAFsucAFBFsucB=
12 simplrl φABAωBωBAAω
13 simplrr φABAωBωBABω
14 simpr φABAωBωBABA
15 simplll φABAωBωBAφ
16 1 2 3 isf32lem3 AωBωBAφFAFsucAFBFsucB=
17 12 13 14 15 16 syl22anc φABAωBωBAFAFsucAFBFsucB=
18 simplr φABAωBωAB
19 nnord AωOrdA
20 nnord BωOrdB
21 ordtri3 OrdAOrdBA=B¬ABBA
22 19 20 21 syl2an AωBωA=B¬ABBA
23 22 adantl φABAωBωA=B¬ABBA
24 23 necon2abid φABAωBωABBAAB
25 18 24 mpbird φABAωBωABBA
26 11 17 25 mpjaodan φABAωBωFAFsucAFBFsucB=