Metamath Proof Explorer


Theorem isf32lem3

Description: Lemma for isfin3-2 . Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φF:ω𝒫G
isf32lem.b φxωFsucxFx
isf32lem.c φ¬ranFranF
Assertion isf32lem3 AωBωBAφFAFsucAFBFsucB=

Proof

Step Hyp Ref Expression
1 isf32lem.a φF:ω𝒫G
2 isf32lem.b φxωFsucxFx
3 isf32lem.c φ¬ranFranF
4 eldifi aFAFsucAaFA
5 simpll AωBωBAφAω
6 peano2 BωsucBω
7 6 ad2antlr AωBωBAφsucBω
8 nnord AωOrdA
9 8 ad2antrr AωBωBAφOrdA
10 simprl AωBωBAφBA
11 ordsucss OrdABAsucBA
12 9 10 11 sylc AωBωBAφsucBA
13 simprr AωBωBAφφ
14 1 2 3 isf32lem1 AωsucBωsucBAφFAFsucB
15 5 7 12 13 14 syl22anc AωBωBAφFAFsucB
16 15 sseld AωBωBAφaFAaFsucB
17 elndif aFsucB¬aFBFsucB
18 4 16 17 syl56 AωBωBAφaFAFsucA¬aFBFsucB
19 18 ralrimiv AωBωBAφaFAFsucA¬aFBFsucB
20 disj FAFsucAFBFsucB=aFAFsucA¬aFBFsucB
21 19 20 sylibr AωBωBAφFAFsucAFBFsucB=