Description: Lemma for isfin3-2 . Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isf32lem.a | |
|
isf32lem.b | |
||
isf32lem.c | |
||
Assertion | isf32lem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf32lem.a | |
|
2 | isf32lem.b | |
|
3 | isf32lem.c | |
|
4 | eldifi | |
|
5 | simpll | |
|
6 | peano2 | |
|
7 | 6 | ad2antlr | |
8 | nnord | |
|
9 | 8 | ad2antrr | |
10 | simprl | |
|
11 | ordsucss | |
|
12 | 9 10 11 | sylc | |
13 | simprr | |
|
14 | 1 2 3 | isf32lem1 | |
15 | 5 7 12 13 14 | syl22anc | |
16 | 15 | sseld | |
17 | elndif | |
|
18 | 4 16 17 | syl56 | |
19 | 18 | ralrimiv | |
20 | disj | |
|
21 | 19 20 | sylibr | |