Metamath Proof Explorer


Theorem isf32lem1

Description: Lemma for isfin3-2 . Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Hypotheses isf32lem.a φF:ω𝒫G
isf32lem.b φxωFsucxFx
isf32lem.c φ¬ranFranF
Assertion isf32lem1 AωBωBAφFAFB

Proof

Step Hyp Ref Expression
1 isf32lem.a φF:ω𝒫G
2 isf32lem.b φxωFsucxFx
3 isf32lem.c φ¬ranFranF
4 fveq2 a=BFa=FB
5 4 sseq1d a=BFaFBFBFB
6 5 imbi2d a=BφFaFBφFBFB
7 fveq2 a=bFa=Fb
8 7 sseq1d a=bFaFBFbFB
9 8 imbi2d a=bφFaFBφFbFB
10 fveq2 a=sucbFa=Fsucb
11 10 sseq1d a=sucbFaFBFsucbFB
12 11 imbi2d a=sucbφFaFBφFsucbFB
13 fveq2 a=AFa=FA
14 13 sseq1d a=AFaFBFAFB
15 14 imbi2d a=AφFaFBφFAFB
16 ssid FBFB
17 16 2a1i BωφFBFB
18 suceq x=bsucx=sucb
19 18 fveq2d x=bFsucx=Fsucb
20 fveq2 x=bFx=Fb
21 19 20 sseq12d x=bFsucxFxFsucbFb
22 21 rspcv bωxωFsucxFxFsucbFb
23 2 22 syl5 bωφFsucbFb
24 23 ad2antrr bωBωBbφFsucbFb
25 sstr2 FsucbFbFbFBFsucbFB
26 24 25 syl6 bωBωBbφFbFBFsucbFB
27 26 a2d bωBωBbφFbFBφFsucbFB
28 6 9 12 15 17 27 findsg AωBωBAφFAFB
29 28 impr AωBωBAφFAFB