Metamath Proof Explorer


Theorem isfin32i

Description: One half of isfin3-2 . (Contributed by Mario Carneiro, 3-Jun-2015)

Ref Expression
Assertion isfin32i AFinIII¬ω*A

Proof

Step Hyp Ref Expression
1 isfin3 AFinIII𝒫AFinIV
2 isfin4-2 𝒫AFinIV𝒫AFinIV¬ω𝒫A
3 2 ibi 𝒫AFinIV¬ω𝒫A
4 relwdom Rel*
5 4 brrelex1i ω*AωV
6 canth2g ωVω𝒫ω
7 sdomdom ω𝒫ωω𝒫ω
8 5 6 7 3syl ω*Aω𝒫ω
9 wdompwdom ω*A𝒫ω𝒫A
10 domtr ω𝒫ω𝒫ω𝒫Aω𝒫A
11 8 9 10 syl2anc ω*Aω𝒫A
12 3 11 nsyl 𝒫AFinIV¬ω*A
13 1 12 sylbi AFinIII¬ω*A