Metamath Proof Explorer


Theorem isfth2

Description: Equivalent condition for a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfth.b B=BaseC
isfth.h H=HomC
isfth.j J=HomD
Assertion isfth2 FCFaithDGFCFuncDGxByBxGy:xHy1-1FxJFy

Proof

Step Hyp Ref Expression
1 isfth.b B=BaseC
2 isfth.h H=HomC
3 isfth.j J=HomD
4 1 isfth FCFaithDGFCFuncDGxByBFunxGy-1
5 simpll FCFuncDGxByBFCFuncDG
6 simplr FCFuncDGxByBxB
7 simpr FCFuncDGxByByB
8 1 2 3 5 6 7 funcf2 FCFuncDGxByBxGy:xHyFxJFy
9 df-f1 xGy:xHy1-1FxJFyxGy:xHyFxJFyFunxGy-1
10 9 baib xGy:xHyFxJFyxGy:xHy1-1FxJFyFunxGy-1
11 8 10 syl FCFuncDGxByBxGy:xHy1-1FxJFyFunxGy-1
12 11 ralbidva FCFuncDGxByBxGy:xHy1-1FxJFyyBFunxGy-1
13 12 ralbidva FCFuncDGxByBxGy:xHy1-1FxJFyxByBFunxGy-1
14 13 pm5.32i FCFuncDGxByBxGy:xHy1-1FxJFyFCFuncDGxByBFunxGy-1
15 4 14 bitr4i FCFaithDGFCFuncDGxByBxGy:xHy1-1FxJFy