Metamath Proof Explorer


Theorem isfull2

Description: Equivalent condition for a full functor. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfull.b B=BaseC
isfull.j J=HomD
isfull.h H=HomC
Assertion isfull2 FCFullDGFCFuncDGxByBxGy:xHyontoFxJFy

Proof

Step Hyp Ref Expression
1 isfull.b B=BaseC
2 isfull.j J=HomD
3 isfull.h H=HomC
4 1 2 isfull FCFullDGFCFuncDGxByBranxGy=FxJFy
5 simpll FCFuncDGxByBFCFuncDG
6 simplr FCFuncDGxByBxB
7 simpr FCFuncDGxByByB
8 1 3 2 5 6 7 funcf2 FCFuncDGxByBxGy:xHyFxJFy
9 ffn xGy:xHyFxJFyxGyFnxHy
10 df-fo xGy:xHyontoFxJFyxGyFnxHyranxGy=FxJFy
11 10 baib xGyFnxHyxGy:xHyontoFxJFyranxGy=FxJFy
12 8 9 11 3syl FCFuncDGxByBxGy:xHyontoFxJFyranxGy=FxJFy
13 12 ralbidva FCFuncDGxByBxGy:xHyontoFxJFyyBranxGy=FxJFy
14 13 ralbidva FCFuncDGxByBxGy:xHyontoFxJFyxByBranxGy=FxJFy
15 14 pm5.32i FCFuncDGxByBxGy:xHyontoFxJFyFCFuncDGxByBranxGy=FxJFy
16 4 15 bitr4i FCFullDGFCFuncDGxByBxGy:xHyontoFxJFy