Metamath Proof Explorer


Theorem ishaus

Description: The predicate "is a Hausdorff space". (Contributed by NM, 8-Mar-2007)

Ref Expression
Hypothesis ist0.1 X=J
Assertion ishaus JHausJTopxXyXxynJmJxnymnm=

Proof

Step Hyp Ref Expression
1 ist0.1 X=J
2 unieq j=Jj=J
3 2 1 eqtr4di j=Jj=X
4 rexeq j=Jmjxnymnm=mJxnymnm=
5 4 rexeqbi1dv j=Jnjmjxnymnm=nJmJxnymnm=
6 5 imbi2d j=Jxynjmjxnymnm=xynJmJxnymnm=
7 3 6 raleqbidv j=Jyjxynjmjxnymnm=yXxynJmJxnymnm=
8 3 7 raleqbidv j=Jxjyjxynjmjxnymnm=xXyXxynJmJxnymnm=
9 df-haus Haus=jTop|xjyjxynjmjxnymnm=
10 8 9 elrab2 JHausJTopxXyXxynJmJxnymnm=