Metamath Proof Explorer


Theorem ishlat3N

Description: The predicate "is a Hilbert lattice". Note that the superposition principle is expressed in the compact form E. z e. A ( x .\/ z ) = ( y .\/ z ) . The exchange property and atomicity are provided by K e. CvLat , and "minimum height 4" is shown explicitly. (Contributed by NM, 8-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses ishlat.b B=BaseK
ishlat.l ˙=K
ishlat.s <˙=<K
ishlat.j ˙=joinK
ishlat.z 0˙=0.K
ishlat.u 1˙=1.K
ishlat.a A=AtomsK
Assertion ishlat3N KHLKOMLKCLatKCvLatxAyAzAx˙z=y˙zxByBzB0˙<˙xx<˙yy<˙zz<˙1˙

Proof

Step Hyp Ref Expression
1 ishlat.b B=BaseK
2 ishlat.l ˙=K
3 ishlat.s <˙=<K
4 ishlat.j ˙=joinK
5 ishlat.z 0˙=0.K
6 ishlat.u 1˙=1.K
7 ishlat.a A=AtomsK
8 1 2 3 4 5 6 7 ishlat1 KHLKOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
9 simpll3 KOMLKCLatKCvLatxAyAzAKCvLat
10 simplrl KOMLKCLatKCvLatxAyAzAxA
11 simplrr KOMLKCLatKCvLatxAyAzAyA
12 simpr KOMLKCLatKCvLatxAyAzAzA
13 7 2 4 cvlsupr3 KCvLatxAyAzAx˙z=y˙zxyzxzyz˙x˙y
14 9 10 11 12 13 syl13anc KOMLKCLatKCvLatxAyAzAx˙z=y˙zxyzxzyz˙x˙y
15 14 rexbidva KOMLKCLatKCvLatxAyAzAx˙z=y˙zzAxyzxzyz˙x˙y
16 ne0i xAA
17 16 ad2antrl KOMLKCLatKCvLatxAyAA
18 r19.37zv AzAxyzxzyz˙x˙yxyzAzxzyz˙x˙y
19 17 18 syl KOMLKCLatKCvLatxAyAzAxyzxzyz˙x˙yxyzAzxzyz˙x˙y
20 15 19 bitr2d KOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yzAx˙z=y˙z
21 20 2ralbidva KOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxAyAzAx˙z=y˙z
22 21 anbi1d KOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙xAyAzAx˙z=y˙zxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
23 22 pm5.32i KOMLKCLatKCvLatxAyAxyzAzxzyz˙x˙yxByBzB0˙<˙xx<˙yy<˙zz<˙1˙KOMLKCLatKCvLatxAyAzAx˙z=y˙zxByBzB0˙<˙xx<˙yy<˙zz<˙1˙
24 8 23 bitri KHLKOMLKCLatKCvLatxAyAzAx˙z=y˙zxByBzB0˙<˙xx<˙yy<˙zz<˙1˙