Metamath Proof Explorer


Theorem islfld

Description: Properties that determine a linear functional. TODO: use this in place of islfl when it shortens the proof. (Contributed by NM, 19-Oct-2014)

Ref Expression
Hypotheses islfld.v φV=BaseW
islfld.a φ+˙=+W
islfld.d φD=ScalarW
islfld.s φ·˙=W
islfld.k φK=BaseD
islfld.p φ˙=+D
islfld.t φ×˙=D
islfld.f φF=LFnlW
islfld.u φG:VK
islfld.l φrKxVyVGr·˙x+˙y=r×˙Gx˙Gy
islfld.w φWX
Assertion islfld φGF

Proof

Step Hyp Ref Expression
1 islfld.v φV=BaseW
2 islfld.a φ+˙=+W
3 islfld.d φD=ScalarW
4 islfld.s φ·˙=W
5 islfld.k φK=BaseD
6 islfld.p φ˙=+D
7 islfld.t φ×˙=D
8 islfld.f φF=LFnlW
9 islfld.u φG:VK
10 islfld.l φrKxVyVGr·˙x+˙y=r×˙Gx˙Gy
11 islfld.w φWX
12 3 fveq2d φBaseD=BaseScalarW
13 5 12 eqtrd φK=BaseScalarW
14 1 13 feq23d φG:VKG:BaseWBaseScalarW
15 9 14 mpbid φG:BaseWBaseScalarW
16 10 ralrimivvva φrKxVyVGr·˙x+˙y=r×˙Gx˙Gy
17 4 oveqd φr·˙x=rWx
18 eqidd φy=y
19 2 17 18 oveq123d φr·˙x+˙y=rWx+Wy
20 19 fveq2d φGr·˙x+˙y=GrWx+Wy
21 3 fveq2d φ+D=+ScalarW
22 6 21 eqtrd φ˙=+ScalarW
23 3 fveq2d φD=ScalarW
24 7 23 eqtrd φ×˙=ScalarW
25 24 oveqd φr×˙Gx=rScalarWGx
26 eqidd φGy=Gy
27 22 25 26 oveq123d φr×˙Gx˙Gy=rScalarWGx+ScalarWGy
28 20 27 eqeq12d φGr·˙x+˙y=r×˙Gx˙GyGrWx+Wy=rScalarWGx+ScalarWGy
29 1 28 raleqbidv φyVGr·˙x+˙y=r×˙Gx˙GyyBaseWGrWx+Wy=rScalarWGx+ScalarWGy
30 1 29 raleqbidv φxVyVGr·˙x+˙y=r×˙Gx˙GyxBaseWyBaseWGrWx+Wy=rScalarWGx+ScalarWGy
31 13 30 raleqbidv φrKxVyVGr·˙x+˙y=r×˙Gx˙GyrBaseScalarWxBaseWyBaseWGrWx+Wy=rScalarWGx+ScalarWGy
32 16 31 mpbid φrBaseScalarWxBaseWyBaseWGrWx+Wy=rScalarWGx+ScalarWGy
33 eqid BaseW=BaseW
34 eqid +W=+W
35 eqid ScalarW=ScalarW
36 eqid W=W
37 eqid BaseScalarW=BaseScalarW
38 eqid +ScalarW=+ScalarW
39 eqid ScalarW=ScalarW
40 eqid LFnlW=LFnlW
41 33 34 35 36 37 38 39 40 islfl WXGLFnlWG:BaseWBaseScalarWrBaseScalarWxBaseWyBaseWGrWx+Wy=rScalarWGx+ScalarWGy
42 41 biimpar WXG:BaseWBaseScalarWrBaseScalarWxBaseWyBaseWGrWx+Wy=rScalarWGx+ScalarWGyGLFnlW
43 11 15 32 42 syl12anc φGLFnlW
44 43 8 eleqtrrd φGF