| Step | Hyp | Ref | Expression | 
						
							| 1 |  | islfld.v |  | 
						
							| 2 |  | islfld.a |  | 
						
							| 3 |  | islfld.d |  | 
						
							| 4 |  | islfld.s |  | 
						
							| 5 |  | islfld.k |  | 
						
							| 6 |  | islfld.p |  | 
						
							| 7 |  | islfld.t |  | 
						
							| 8 |  | islfld.f |  | 
						
							| 9 |  | islfld.u |  | 
						
							| 10 |  | islfld.l |  | 
						
							| 11 |  | islfld.w |  | 
						
							| 12 | 3 | fveq2d |  | 
						
							| 13 | 5 12 | eqtrd |  | 
						
							| 14 | 1 13 | feq23d |  | 
						
							| 15 | 9 14 | mpbid |  | 
						
							| 16 | 10 | ralrimivvva |  | 
						
							| 17 | 4 | oveqd |  | 
						
							| 18 |  | eqidd |  | 
						
							| 19 | 2 17 18 | oveq123d |  | 
						
							| 20 | 19 | fveq2d |  | 
						
							| 21 | 3 | fveq2d |  | 
						
							| 22 | 6 21 | eqtrd |  | 
						
							| 23 | 3 | fveq2d |  | 
						
							| 24 | 7 23 | eqtrd |  | 
						
							| 25 | 24 | oveqd |  | 
						
							| 26 |  | eqidd |  | 
						
							| 27 | 22 25 26 | oveq123d |  | 
						
							| 28 | 20 27 | eqeq12d |  | 
						
							| 29 | 1 28 | raleqbidv |  | 
						
							| 30 | 1 29 | raleqbidv |  | 
						
							| 31 | 13 30 | raleqbidv |  | 
						
							| 32 | 16 31 | mpbid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 |  | eqid |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 33 34 35 36 37 38 39 40 | islfl |  | 
						
							| 42 | 41 | biimpar |  | 
						
							| 43 | 11 15 32 42 | syl12anc |  | 
						
							| 44 | 43 8 | eleqtrrd |  |