Metamath Proof Explorer


Theorem islininds2

Description: Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses islindeps2.b B=BaseM
islindeps2.z Z=0M
islindeps2.r R=ScalarM
islindeps2.e E=BaseR
islindeps2.0 0˙=0R
Assertion islininds2 MLModS𝒫BRNzRingSlinIndSMsSfESs¬finSupp0˙fflinCMSss

Proof

Step Hyp Ref Expression
1 islindeps2.b B=BaseM
2 islindeps2.z Z=0M
3 islindeps2.r R=ScalarM
4 islindeps2.e E=BaseR
5 islindeps2.0 0˙=0R
6 lindepsnlininds S𝒫BMLModSlinDepSM¬SlinIndSM
7 6 ancoms MLModS𝒫BSlinDepSM¬SlinIndSM
8 7 3adant3 MLModS𝒫BRNzRingSlinDepSM¬SlinIndSM
9 8 con2bid MLModS𝒫BRNzRingSlinIndSM¬SlinDepSM
10 notnotb finSupp0˙f¬¬finSupp0˙f
11 nne ¬flinCMSssflinCMSs=s
12 11 bicomi flinCMSs=s¬flinCMSss
13 10 12 anbi12i finSupp0˙fflinCMSs=s¬¬finSupp0˙f¬flinCMSss
14 pm4.56 ¬¬finSupp0˙f¬flinCMSss¬¬finSupp0˙fflinCMSss
15 13 14 bitri finSupp0˙fflinCMSs=s¬¬finSupp0˙fflinCMSss
16 15 rexbii fESsfinSupp0˙fflinCMSs=sfESs¬¬finSupp0˙fflinCMSss
17 rexnal fESs¬¬finSupp0˙fflinCMSss¬fESs¬finSupp0˙fflinCMSss
18 16 17 bitri fESsfinSupp0˙fflinCMSs=s¬fESs¬finSupp0˙fflinCMSss
19 18 rexbii sSfESsfinSupp0˙fflinCMSs=ssS¬fESs¬finSupp0˙fflinCMSss
20 rexnal sS¬fESs¬finSupp0˙fflinCMSss¬sSfESs¬finSupp0˙fflinCMSss
21 19 20 bitri sSfESsfinSupp0˙fflinCMSs=s¬sSfESs¬finSupp0˙fflinCMSss
22 1 2 3 4 5 islindeps2 MLModS𝒫BRNzRingsSfESsfinSupp0˙fflinCMSs=sSlinDepSM
23 21 22 biimtrrid MLModS𝒫BRNzRing¬sSfESs¬finSupp0˙fflinCMSssSlinDepSM
24 23 con1d MLModS𝒫BRNzRing¬SlinDepSMsSfESs¬finSupp0˙fflinCMSss
25 9 24 sylbid MLModS𝒫BRNzRingSlinIndSMsSfESs¬finSupp0˙fflinCMSss