Description: Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019) (Proof shortened by AV, 30-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islindeps2.b | |
|
islindeps2.z | |
||
islindeps2.r | |
||
islindeps2.e | |
||
islindeps2.0 | |
||
Assertion | islininds2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islindeps2.b | |
|
2 | islindeps2.z | |
|
3 | islindeps2.r | |
|
4 | islindeps2.e | |
|
5 | islindeps2.0 | |
|
6 | lindepsnlininds | |
|
7 | 6 | ancoms | |
8 | 7 | 3adant3 | |
9 | 8 | con2bid | |
10 | notnotb | |
|
11 | nne | |
|
12 | 11 | bicomi | |
13 | 10 12 | anbi12i | |
14 | pm4.56 | |
|
15 | 13 14 | bitri | |
16 | 15 | rexbii | |
17 | rexnal | |
|
18 | 16 17 | bitri | |
19 | 18 | rexbii | |
20 | rexnal | |
|
21 | 19 20 | bitri | |
22 | 1 2 3 4 5 | islindeps2 | |
23 | 21 22 | biimtrrid | |
24 | 23 | con1d | |
25 | 9 24 | sylbid | |