Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islmhmd.x | |
|
islmhmd.a | |
||
islmhmd.b | |
||
islmhmd.k | |
||
islmhmd.j | |
||
islmhmd.n | |
||
islmhmd.s | |
||
islmhmd.t | |
||
islmhmd.c | |
||
islmhmd.f | |
||
islmhmd.l | |
||
Assertion | islmhmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhmd.x | |
|
2 | islmhmd.a | |
|
3 | islmhmd.b | |
|
4 | islmhmd.k | |
|
5 | islmhmd.j | |
|
6 | islmhmd.n | |
|
7 | islmhmd.s | |
|
8 | islmhmd.t | |
|
9 | islmhmd.c | |
|
10 | islmhmd.f | |
|
11 | islmhmd.l | |
|
12 | 11 | ralrimivva | |
13 | 10 9 12 | 3jca | |
14 | 4 5 6 1 2 3 | islmhm | |
15 | 7 8 13 14 | syl21anbrc | |