Metamath Proof Explorer


Theorem islmhmd

Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)

Ref Expression
Hypotheses islmhmd.x X=BaseS
islmhmd.a ·˙=S
islmhmd.b ×˙=T
islmhmd.k K=ScalarS
islmhmd.j J=ScalarT
islmhmd.n N=BaseK
islmhmd.s φSLMod
islmhmd.t φTLMod
islmhmd.c φJ=K
islmhmd.f φFSGrpHomT
islmhmd.l φxNyXFx·˙y=x×˙Fy
Assertion islmhmd φFSLMHomT

Proof

Step Hyp Ref Expression
1 islmhmd.x X=BaseS
2 islmhmd.a ·˙=S
3 islmhmd.b ×˙=T
4 islmhmd.k K=ScalarS
5 islmhmd.j J=ScalarT
6 islmhmd.n N=BaseK
7 islmhmd.s φSLMod
8 islmhmd.t φTLMod
9 islmhmd.c φJ=K
10 islmhmd.f φFSGrpHomT
11 islmhmd.l φxNyXFx·˙y=x×˙Fy
12 11 ralrimivva φxNyXFx·˙y=x×˙Fy
13 10 9 12 3jca φFSGrpHomTJ=KxNyXFx·˙y=x×˙Fy
14 4 5 6 1 2 3 islmhm FSLMHomTSLModTLModFSGrpHomTJ=KxNyXFx·˙y=x×˙Fy
15 7 8 13 14 syl21anbrc φFSLMHomT