Metamath Proof Explorer


Theorem ismhmd

Description: Deduction version of ismhm . (Contributed by SN, 27-Jul-2024)

Ref Expression
Hypotheses ismhmd.b B=BaseS
ismhmd.c C=BaseT
ismhmd.p +˙=+S
ismhmd.q ˙=+T
ismhmd.0 0˙=0S
ismhmd.z Z=0T
ismhmd.s φSMnd
ismhmd.t φTMnd
ismhmd.f φF:BC
ismhmd.a φxByBFx+˙y=Fx˙Fy
ismhmd.h φF0˙=Z
Assertion ismhmd φFSMndHomT

Proof

Step Hyp Ref Expression
1 ismhmd.b B=BaseS
2 ismhmd.c C=BaseT
3 ismhmd.p +˙=+S
4 ismhmd.q ˙=+T
5 ismhmd.0 0˙=0S
6 ismhmd.z Z=0T
7 ismhmd.s φSMnd
8 ismhmd.t φTMnd
9 ismhmd.f φF:BC
10 ismhmd.a φxByBFx+˙y=Fx˙Fy
11 ismhmd.h φF0˙=Z
12 10 ralrimivva φxByBFx+˙y=Fx˙Fy
13 9 12 11 3jca φF:BCxByBFx+˙y=Fx˙FyF0˙=Z
14 1 2 3 4 5 6 ismhm FSMndHomTSMndTMndF:BCxByBFx+˙y=Fx˙FyF0˙=Z
15 7 8 13 14 syl21anbrc φFSMndHomT