Metamath Proof Explorer


Theorem ismhp2

Description: Deduce a homogeneous polynomial from its properties. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses mhpfval.h H=ImHomPR
mhpfval.p P=ImPolyR
mhpfval.b B=BaseP
mhpfval.0 0˙=0R
mhpfval.d D=h0I|h-1Fin
mhpfval.i φIV
mhpfval.r φRW
mhpval.n φN0
ismhp2.1 φXB
ismhp2.2 φXsupp0˙gD|fld𝑠0g=N
Assertion ismhp2 φXHN

Proof

Step Hyp Ref Expression
1 mhpfval.h H=ImHomPR
2 mhpfval.p P=ImPolyR
3 mhpfval.b B=BaseP
4 mhpfval.0 0˙=0R
5 mhpfval.d D=h0I|h-1Fin
6 mhpfval.i φIV
7 mhpfval.r φRW
8 mhpval.n φN0
9 ismhp2.1 φXB
10 ismhp2.2 φXsupp0˙gD|fld𝑠0g=N
11 1 2 3 4 5 6 7 8 ismhp φXHNXBXsupp0˙gD|fld𝑠0g=N
12 9 10 11 mpbir2and φXHN