Metamath Proof Explorer


Theorem ismnuprim

Description: Express the predicate on U in ismnu using only primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion ismnuprim zU𝒫zUfwU𝒫zwizvUivvfufiuuwzzUf¬wwU¬v¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw

Proof

Step Hyp Ref Expression
1 19.28v f𝒫zUwU𝒫zwizvUivvfufiuuw𝒫zUfwU𝒫zwizvUivvfufiuuw
2 r19.42v wU𝒫zU𝒫zwizvUivvfufiuuw𝒫zUwU𝒫zwizvUivvfufiuuw
3 19.26 vvzvUvwizvUivvfufiuuwvvzvUvwvizvUivvfufiuuw
4 19.26 vvzvUvzvwvvzvUvvzvw
5 jcab vzvUvwvzvUvzvw
6 5 albii vvzvUvwvvzvUvzvw
7 pwss 𝒫zUvvzvU
8 pwss 𝒫zwvvzvw
9 7 8 anbi12i 𝒫zU𝒫zwvvzvUvvzvw
10 4 6 9 3bitr4i vvzvUvw𝒫zU𝒫zw
11 ralcom4 izvvUivvfufiuuwvizvUivvfufiuuw
12 19.23v vvUivvfufiuuwvvUivvfufiuuw
13 3anass vUivvfvUivvf
14 13 exbii vvUivvfvvUivvf
15 df-rex vUivvfvvUivvf
16 14 15 bitr4i vvUivvfvUivvf
17 16 imbi1i vvUivvfufiuuwvUivvfufiuuw
18 12 17 bitri vvUivvfufiuuwvUivvfufiuuw
19 18 ralbii izvvUivvfufiuuwizvUivvfufiuuw
20 11 19 bitr3i vizvUivvfufiuuwizvUivvfufiuuw
21 10 20 anbi12i vvzvUvwvizvUivvfufiuuw𝒫zU𝒫zwizvUivvfufiuuw
22 anass 𝒫zU𝒫zwizvUivvfufiuuw𝒫zU𝒫zwizvUivvfufiuuw
23 21 22 bitri vvzvUvwvizvUivvfufiuuw𝒫zU𝒫zwizvUivvfufiuuw
24 3 23 bitri vvzvUvwizvUivvfufiuuw𝒫zU𝒫zwizvUivvfufiuuw
25 dfss2 vzttvtz
26 df-an vUvw¬vU¬vw
27 25 26 imbi12i vzvUvwttvtz¬vU¬vw
28 3impexp vUivvfufiuuwvUivvfufiuuw
29 biid iuiu
30 expanduniss uwooussosw
31 29 30 expandan iuuw¬iu¬ooussosw
32 31 expandrexn ufiuuw¬uufiu¬ooussosw
33 32 imbi2i vfufiuuwvf¬uufiu¬ooussosw
34 33 imbi2i ivvfufiuuwivvf¬uufiu¬ooussosw
35 34 imbi2i vUivvfufiuuwvUivvf¬uufiu¬ooussosw
36 28 35 bitri vUivvfufiuuwvUivvf¬uufiu¬ooussosw
37 36 expandral izvUivvfufiuuwiizvUivvf¬uufiu¬ooussosw
38 27 37 expandan vzvUvwizvUivvfufiuuw¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw
39 38 albii vvzvUvwizvUivvfufiuuwv¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw
40 24 39 bitr3i 𝒫zU𝒫zwizvUivvfufiuuwv¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw
41 40 expandrex wU𝒫zU𝒫zwizvUivvfufiuuw¬wwU¬v¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw
42 2 41 bitr3i 𝒫zUwU𝒫zwizvUivvfufiuuw¬wwU¬v¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw
43 42 albii f𝒫zUwU𝒫zwizvUivvfufiuuwf¬wwU¬v¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw
44 1 43 bitr3i 𝒫zUfwU𝒫zwizvUivvfufiuuwf¬wwU¬v¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw
45 44 expandral zU𝒫zUfwU𝒫zwizvUivvfufiuuwzzUf¬wwU¬v¬ttvtz¬vU¬vw¬iizvUivvf¬uufiu¬ooussosw