Metamath Proof Explorer


Theorem ismxidl

Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B=BaseR
Assertion ismxidl Could not format assertion : No typesetting found for |- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 mxidlval.1 B=BaseR
2 1 mxidlval Could not format ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) : No typesetting found for |- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) with typecode |-
3 2 eleq2d Could not format ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> M e. { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) ) : No typesetting found for |- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> M e. { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) ) with typecode |-
4 neeq1 i=MiBMB
5 sseq1 i=MijMj
6 eqeq2 i=Mj=ij=M
7 6 orbi1d i=Mj=ij=Bj=Mj=B
8 5 7 imbi12d i=Mijj=ij=BMjj=Mj=B
9 8 ralbidv i=MjLIdealRijj=ij=BjLIdealRMjj=Mj=B
10 4 9 anbi12d i=MiBjLIdealRijj=ij=BMBjLIdealRMjj=Mj=B
11 10 elrab MiLIdealR|iBjLIdealRijj=ij=BMLIdealRMBjLIdealRMjj=Mj=B
12 3anass MLIdealRMBjLIdealRMjj=Mj=BMLIdealRMBjLIdealRMjj=Mj=B
13 11 12 bitr4i MiLIdealR|iBjLIdealRijj=ij=BMLIdealRMBjLIdealRMjj=Mj=B
14 3 13 bitrdi Could not format ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) with typecode |-