Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isnumbasabl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harcl | |
|
2 | onenon | |
|
3 | 1 2 | ax-mp | |
4 | unnum | |
|
5 | 3 4 | mpan2 | |
6 | ssun2 | |
|
7 | harn0 | |
|
8 | ssn0 | |
|
9 | 6 7 8 | sylancr | |
10 | isnumbasgrplem3 | |
|
11 | 5 9 10 | syl2anc | |
12 | ablgrp | |
|
13 | 12 | ssriv | |
14 | imass2 | |
|
15 | 13 14 | ax-mp | |
16 | 15 | sseli | |
17 | isnumbasgrplem2 | |
|
18 | 16 17 | syl | |
19 | 11 18 | impbii | |