Metamath Proof Explorer


Theorem isnumbasabl

Description: A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion isnumbasabl SdomcardSharSBaseAbel

Proof

Step Hyp Ref Expression
1 harcl harSOn
2 onenon harSOnharSdomcard
3 1 2 ax-mp harSdomcard
4 unnum SdomcardharSdomcardSharSdomcard
5 3 4 mpan2 SdomcardSharSdomcard
6 ssun2 harSSharS
7 harn0 SdomcardharS
8 ssn0 harSSharSharSSharS
9 6 7 8 sylancr SdomcardSharS
10 isnumbasgrplem3 SharSdomcardSharSSharSBaseAbel
11 5 9 10 syl2anc SdomcardSharSBaseAbel
12 ablgrp xAbelxGrp
13 12 ssriv AbelGrp
14 imass2 AbelGrpBaseAbelBaseGrp
15 13 14 ax-mp BaseAbelBaseGrp
16 15 sseli SharSBaseAbelSharSBaseGrp
17 isnumbasgrplem2 SharSBaseGrpSdomcard
18 16 17 syl SharSBaseAbelSdomcard
19 11 18 impbii SdomcardSharSBaseAbel