Metamath Proof Explorer


Theorem isnvi

Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses isnvi.5 X=ranG
isnvi.6 Z=GIdG
isnvi.7 GSCVecOLD
isnvi.8 N:X
isnvi.9 xXNx=0x=Z
isnvi.10 yxXNySx=yNx
isnvi.11 xXyXNxGyNx+Ny
isnvi.12 U=GSN
Assertion isnvi UNrmCVec

Proof

Step Hyp Ref Expression
1 isnvi.5 X=ranG
2 isnvi.6 Z=GIdG
3 isnvi.7 GSCVecOLD
4 isnvi.8 N:X
5 isnvi.9 xXNx=0x=Z
6 isnvi.10 yxXNySx=yNx
7 isnvi.11 xXyXNxGyNx+Ny
8 isnvi.12 U=GSN
9 5 ex xXNx=0x=Z
10 6 ancoms xXyNySx=yNx
11 10 ralrimiva xXyNySx=yNx
12 7 ralrimiva xXyXNxGyNx+Ny
13 9 11 12 3jca xXNx=0x=ZyNySx=yNxyXNxGyNx+Ny
14 13 rgen xXNx=0x=ZyNySx=yNxyXNxGyNx+Ny
15 1 2 isnv GSNNrmCVecGSCVecOLDN:XxXNx=0x=ZyNySx=yNxyXNxGyNx+Ny
16 3 4 14 15 mpbir3an GSNNrmCVec
17 8 16 eqeltri UNrmCVec