Metamath Proof Explorer


Theorem isoeq1

Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)

Ref Expression
Assertion isoeq1 H=GHIsomR,SABGIsomR,SAB

Proof

Step Hyp Ref Expression
1 f1oeq1 H=GH:A1-1 ontoBG:A1-1 ontoB
2 fveq1 H=GHx=Gx
3 fveq1 H=GHy=Gy
4 2 3 breq12d H=GHxSHyGxSGy
5 4 bibi2d H=GxRyHxSHyxRyGxSGy
6 5 2ralbidv H=GxAyAxRyHxSHyxAyAxRyGxSGy
7 1 6 anbi12d H=GH:A1-1 ontoBxAyAxRyHxSHyG:A1-1 ontoBxAyAxRyGxSGy
8 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
9 df-isom GIsomR,SABG:A1-1 ontoBxAyAxRyGxSGy
10 7 8 9 3bitr4g H=GHIsomR,SABGIsomR,SAB