Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |
|
Assertion | isopn3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |
|
2 | 1 | ntrval | |
3 | inss2 | |
|
4 | 3 | unissi | |
5 | unipw | |
|
6 | 4 5 | sseqtri | |
7 | 6 | a1i | |
8 | id | |
|
9 | pwidg | |
|
10 | 8 9 | elind | |
11 | elssuni | |
|
12 | 10 11 | syl | |
13 | 7 12 | eqssd | |
14 | 2 13 | sylan9eq | |
15 | 14 | ex | |
16 | 1 | ntropn | |
17 | eleq1 | |
|
18 | 16 17 | syl5ibcom | |
19 | 15 18 | impbid | |