Metamath Proof Explorer


Theorem isopn3

Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 X=J
Assertion isopn3 JTopSXSJintJS=S

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 1 ntrval JTopSXintJS=J𝒫S
3 inss2 J𝒫S𝒫S
4 3 unissi J𝒫S𝒫S
5 unipw 𝒫S=S
6 4 5 sseqtri J𝒫SS
7 6 a1i SJJ𝒫SS
8 id SJSJ
9 pwidg SJS𝒫S
10 8 9 elind SJSJ𝒫S
11 elssuni SJ𝒫SSJ𝒫S
12 10 11 syl SJSJ𝒫S
13 7 12 eqssd SJJ𝒫S=S
14 2 13 sylan9eq JTopSXSJintJS=S
15 14 ex JTopSXSJintJS=S
16 1 ntropn JTopSXintJSJ
17 eleq1 intJS=SintJSJSJ
18 16 17 syl5ibcom JTopSXintJS=SSJ
19 15 18 impbid JTopSXSJintJS=S