Metamath Proof Explorer


Theorem isprs

Description: Property of being a preordered set. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypotheses isprs.b B=BaseK
isprs.l ˙=K
Assertion isprs KProsetKVxByBzBx˙xx˙yy˙zx˙z

Proof

Step Hyp Ref Expression
1 isprs.b B=BaseK
2 isprs.l ˙=K
3 fveq2 f=KBasef=BaseK
4 fveq2 f=Kf=K
5 4 sbceq1d f=K[˙f/r]˙xbybzbxrxxryyrzxrz[˙K/r]˙xbybzbxrxxryyrzxrz
6 3 5 sbceqbid f=K[˙Basef/b]˙[˙f/r]˙xbybzbxrxxryyrzxrz[˙BaseK/b]˙[˙K/r]˙xbybzbxrxxryyrzxrz
7 fvex BaseKV
8 fvex KV
9 eqtr3 b=BaseKB=BaseKb=B
10 1 9 mpan2 b=BaseKb=B
11 raleq b=BzbxrxxryyrzxrzzBxrxxryyrzxrz
12 11 raleqbi1dv b=BybzbxrxxryyrzxrzyBzBxrxxryyrzxrz
13 12 raleqbi1dv b=BxbybzbxrxxryyrzxrzxByBzBxrxxryyrzxrz
14 10 13 syl b=BaseKxbybzbxrxxryyrzxrzxByBzBxrxxryyrzxrz
15 eqtr3 r=K˙=Kr=˙
16 2 15 mpan2 r=Kr=˙
17 breq r=˙xrxx˙x
18 breq r=˙xryx˙y
19 breq r=˙yrzy˙z
20 18 19 anbi12d r=˙xryyrzx˙yy˙z
21 breq r=˙xrzx˙z
22 20 21 imbi12d r=˙xryyrzxrzx˙yy˙zx˙z
23 17 22 anbi12d r=˙xrxxryyrzxrzx˙xx˙yy˙zx˙z
24 23 ralbidv r=˙zBxrxxryyrzxrzzBx˙xx˙yy˙zx˙z
25 24 2ralbidv r=˙xByBzBxrxxryyrzxrzxByBzBx˙xx˙yy˙zx˙z
26 16 25 syl r=KxByBzBxrxxryyrzxrzxByBzBx˙xx˙yy˙zx˙z
27 14 26 sylan9bb b=BaseKr=KxbybzbxrxxryyrzxrzxByBzBx˙xx˙yy˙zx˙z
28 7 8 27 sbc2ie [˙BaseK/b]˙[˙K/r]˙xbybzbxrxxryyrzxrzxByBzBx˙xx˙yy˙zx˙z
29 6 28 bitrdi f=K[˙Basef/b]˙[˙f/r]˙xbybzbxrxxryyrzxrzxByBzBx˙xx˙yy˙zx˙z
30 df-proset Proset=f|[˙Basef/b]˙[˙f/r]˙xbybzbxrxxryyrzxrz
31 29 30 elab4g KProsetKVxByBzBx˙xx˙yy˙zx˙z