Metamath Proof Explorer


Theorem issros

Description: The property of being a semirings of sets, i.e., collections of sets containing the empty set, closed under finite intersection, and where complements can be written as finite disjoint unions. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypothesis issros.1 N = s 𝒫 𝒫 O | s x s y s x y s z 𝒫 s z Fin Disj t z t x y = z
Assertion issros S N S 𝒫 𝒫 O S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z

Proof

Step Hyp Ref Expression
1 issros.1 N = s 𝒫 𝒫 O | s x s y s x y s z 𝒫 s z Fin Disj t z t x y = z
2 eleq2 s = S s S
3 eleq2 s = S x y s x y S
4 pweq s = S 𝒫 s = 𝒫 S
5 4 rexeqdv s = S z 𝒫 s z Fin Disj t z t x y = z z 𝒫 S z Fin Disj t z t x y = z
6 3 5 anbi12d s = S x y s z 𝒫 s z Fin Disj t z t x y = z x y S z 𝒫 S z Fin Disj t z t x y = z
7 6 raleqbi1dv s = S y s x y s z 𝒫 s z Fin Disj t z t x y = z y S x y S z 𝒫 S z Fin Disj t z t x y = z
8 7 raleqbi1dv s = S x s y s x y s z 𝒫 s z Fin Disj t z t x y = z x S y S x y S z 𝒫 S z Fin Disj t z t x y = z
9 2 8 anbi12d s = S s x s y s x y s z 𝒫 s z Fin Disj t z t x y = z S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z
10 9 1 elrab2 S N S 𝒫 𝒫 O S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z
11 3anass S 𝒫 𝒫 O S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z S 𝒫 𝒫 O S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z
12 10 11 bitr4i S N S 𝒫 𝒫 O S x S y S x y S z 𝒫 S z Fin Disj t z t x y = z